Medical Image Retrieval: A Multimodal Approach
نویسندگان
چکیده
Medical imaging is becoming a vital component of war on cancer. Tremendous amounts of medical image data are captured and recorded in a digital format during cancer care and cancer research. Facing such an unprecedented volume of image data with heterogeneous image modalities, it is necessary to develop effective and efficient content-based medical image retrieval systems for cancer clinical practice and research. While substantial progress has been made in different areas of content-based image retrieval (CBIR) research, direct applications of existing CBIR techniques to the medical images produced unsatisfactory results, because of the unique characteristics of medical images. In this paper, we develop a new multimodal medical image retrieval approach based on the recent advances in the statistical graphic model and deep learning. Specifically, we first investigate a new extended probabilistic Latent Semantic Analysis model to integrate the visual and textual information from medical images to bridge the semantic gap. We then develop a new deep Boltzmann machine-based multimodal learning model to learn the joint density model from multimodal information in order to derive the missing modality. Experimental results with large volume of real-world medical images have shown that our new approach is a promising solution for the next-generation medical imaging indexing and retrieval system.
منابع مشابه
NovaSearch on Medical ImageCLEF 2013
This article presents the participation of the Center of Informatics and Information Technology group CITI in medical ImageCLEF 2013. This is our first participation and we submitted runs on the modality classification task, the ad-hoc image retrieval task and case retrieval task. We are developing a system to integrate textual and visual retrieval into a framework for multimodal retrieval. Our...
متن کاملContent Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram
Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a database. In medical applications, CBIR is a tool used by physicians to compare the previous and current medical images associated with patients pathological conditions. As the volume of pictorial information stored in medical image databases is in progress, efficient image indexing and retri...
متن کاملMultimodal medical image fusion based on Yager’s intuitionistic fuzzy sets
The objective of image fusion for medical images is to combine multiple images obtained from various sources into a single image suitable for better diagnosis. Most of the state-of-the-art image fusing technique is based on nonfuzzy sets, and the fused image so obtained lags with complementary information. Intuitionistic fuzzy sets (IFS) are determined to be more suitable for civilian, and medi...
متن کاملبازیابی اطلاعات تصویری حوزهی سلامت در وب از دیدگاه متخصصان علوم پزشکی:یک مطالعه کیفی
Introduction: The medical image as a source of non-textual information has an important role in the field of medicine. Since the quality of life is directly related to health, employing this type of information is effective in improving the practice of health professionals. This study was aimed to survey medical image retrieval in the Web from the perspective of experts in medical sciences. M...
متن کاملMultimodal Relevance Feedback for Interactive Image Retrieval
My research addresses the need for an efficient, effective and interactive access into large-scale image collections. In many cases the data of different modalities are interrelated , as for example photos and annotations in photo-sharing repositories , pictures and captions in news web-sites or x-ray scans and reports in medical databases, and I am investigating retrieval approaches that are c...
متن کامل